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Abstract: Dementia, the most severe expression of cognitive impairment, is among the main causes
of disability in older adults and currently affects over 55 million individuals. Dementia prevention
is a global public health priority, and recent studies have shown that dementia risk can be reduced
through non-pharmacological interventions targeting different lifestyle areas. The FINnish GERiatric
Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) has shown a positive
effect on cognition in older adults at risk of dementia through a 2-year multidomain intervention
targeting lifestyle and vascular risk factors. The LETHE project builds on these findings and will
provide a digital-enabled FINGER intervention model for delaying or preventing the onset of cogni-
tive decline. An individualised ICT-based multidomain, preventive lifestyle intervention program
will be implemented utilising behaviour and intervention data through passive and active data
collection. Artificial intelligence and machine learning methods will be used for data-driven risk
factor prediction models. An initial model based on large multinational datasets will be validated
and integrated into an 18-month trial integrating digital biomarkers to further improve the model.
Furthermore, the LETHE project will investigate the concept of federated learning to, on the one
hand, protect the privacy of the health and behaviour data and, on the other hand, to provide the
opportunity to enhance the data model easily by integrating additional clinical centres.

Keywords: dementia; ICT; artificial intelligence; machine learning; intervention; prevention;
federated learning

1. Introduction

Cognitive impairment is common among older adults. Dementia, the most severe
expression of cognitive impairment, represents the seventh leading cause of death among
all diseases and one of the main causes of disability in older people, currently affecting
over 55 million individuals worldwide [1]. As increasing age is the main risk factor for
cognitive impairment and dementia, the worldwide aging of populations is driving the
exponential growth in the number of affected individuals. Indeed, dementia cases are
expected to reach 78 million by 2030 and 130 million in 2050 unless effective preventive and
therapeutic interventions become widely available [2]. Dementia has long been considered
a non-preventable condition, but a lot of evidence from observational and recent interven-
tion studies has shown the potential for risk reduction and prevention of this disorder
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and the main underlying diseases, including cerebrovascular disease and Alzheimer´s
disease (AD) [1]. The life-course model of prevention summarised by the Lancet Com-
mission on Dementia Prevention, Intervention and Care indicated that twelve modifiable
risk factors account for about 40% of all cases of dementia worldwide, which can thus be
potentially prevented or delayed [3]. These factors are low schooling, hypertension, hearing
impairment, smoking, obesity, depression, physical inactivity, diabetes, low social contact,
excessive alcohol consumption, traumatic brain injury, and air pollution [3]. Observational
studies from Western countries reported a decreasing trend in the age-specific incidence of
dementia, probably related to improvements in education, healthcare, and lifestyle, further
supporting the potential benefits of change in risk factor profiles [3]. Europe has been at the
forefront of intervention studies, testing innovative preventive approaches for dementia
risk reduction and prevention. The Finnish Geriatric Intervention Study to Prevent Cogni-
tive Impairment and Disability (FINGER, ClinicalTrials.gov Identifier: NCT01041989) is the
first large and long-term randomised clinical trial (RCT) that showed a positive effect on
cognition after a 2-year multidomain intervention that targeted lifestyle and vascular risk
factors simultaneously [4]. The FINGER RCT included two arms: multidomain interven-
tion, which consisted of physical activity, diet, social stimulation, cognitive training, and
vascular and metabolic risk factor control, and the control group, which received regular
health advice. FINGER was the first RCT to show the feasibility of preventing cognitive
decline using a multidomain intervention among older individuals at risk of dementia [4].
Long-term follow-ups with the FINGER study participants are ongoing (5- and 7-year
follow-up completed; 11-year follow-up ongoing) to assess the long-term effects of the
multidomain intervention on cognition. Other European, large multidomain prevention
trials (MAPT: Multidomain Alzheimer Preventive Trial; PreDIVA: Prevention of Dementia
by Intensive Vascular Care), despite failing to report beneficial cognitive changes in their
respective primary outcomes, reported significant positive effects on cognition in secondary
analyses for participants with specific risk profiles [5,6]. Overall, these RCTs have high-
lighted the need for accurate risk prediction and stratification to optimise the efficacy
of multidomain preventive interventions. The recent guidelines from the World Health
Organisation (WHO) for reducing the risk of cognitive decline and dementia represent a
milestone in the field of dementia prevention and highlight the need to further test and
develop the FINGER model to define, on a global scale, effective and feasible preventive
strategies [7]. The evidence synthetised in the WHO guidelines indicates that risk reduction
for dementia can be achieved at individual and population levels through multidomain
interventions tailored to specific risk profiles. In this landscape, the availability of models
for accurately predicting dementia risk is pivotal to identify and monitor at-risk groups
that can benefit from specific interventions. The development of predictive modelling
of the onset and progression of dementia can leverage on large multidimensional data,
reflecting nonmodifiable (e.g., age, sex, genetics) and modifiable risk factors (e.g., lifestyle,
vascular and metabolic factors), as well as clinical information, such as cognitive status,
and biological parameters (e.g., neuroimaging, blood markers). Increasing the availability
of information and communication technologies (ICT) has also prompted research on digi-
tal biomarkers which can support non-invasive longitudinal monitoring of risk and inform
personalised preventive approaches to maximise adherence to and benefits of preventive
interventions. Artificial Intelligence (AI) tools can handle large and complex data but have
not yet been used to develop predictive modelling of the onset and progression of dementia
based on the above-listed data. To this end, the European LETHE project was launched in
2021 to develop a data-driven risk factor prediction model for older individuals at risk of
cognitive decline by leveraging observational and intervention studies. The LETHE project
capitalises on a multidisciplinary consortium, which includes the research teams who
developed the FINGER model, clinical teams, and partners with strong technical expertise.
In the last decade, several scientific research profects and deployments of proof-of-concept
addressing technologies for smart and healthy living have been developed by partners of
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the LETHE consortium, significantly contributing to progress in the field of ICT solutions
and services for older people.

2. Background
2.1. Ageing, Cognitive Decline, and Dementia

Dementia is usually preceded by mild cognitive impairment (MCI), and even subjec-
tive cognitive symptoms have been associated with increased risk of later cognitive decline.
Subjective cognitive decline (SCD) is characterised by self-experienced, persistent cognitive
decline, which can evolve into the appearance of objective cognitive impairment. In the ab-
sence of objective neuropsychological dysfunction, older adults with SCD are increasingly
viewed as at-risk for non-normative cognitive decline and potential progression to MCI and
AD dementia. MCI might be considered a pre-stage of dementia, characterised by incipient
cognitive dysfunction, as documented in neuropsychological tests, and occurring in up to a
fifth of people aged older than 65 years [8]. MCI represents a heterogeneous syndrome, and
therefore, the prognosis can differ between each individual. Persons with MCI can either
progress to dementia, remain in a stable state, or reverse to normal functioning [8]. The an-
nual conversion rate varies between 5 and 15 percent in the existing literature, with higher
rates observed in studies carried out in clinical settings. MCI is seen as a great opportunity
for an early targeted intervention, thereby delaying or even preventing the conversion
to overt dementia. Increasing evidence from epidemiological, clinical, and biomarker
studies suggests that the development of neuropathological changes leading to dementing
diseases, especially AD, starts many years before clinical symptoms become apparent,
thereby indicating that AD starts as a clinically silent disorder. For instance, research in
persons with familial autosomal dominant AD has revealed pre-symptomatic changes in
multiple markers of disease in blood, cerebrospinal fluid (CSF), and neuroimaging [9,10].
Different biomarkers seem to be a good proxy for incipient neuropathological changes.
The accumulation of Amyloid-Beta (Aβ) or neurofibrillary tangles—the major hallmarks
of AD—can either be depicted through positron emission tomography (PET)-Imaging or
examination of cerebrospinal fluid (CSF) [10]. Magnetic resonance imaging (MRI) gives
insights into neurodegenerative processes through structural brain changes, such as cortical
thickness or specific atrophy patterns. Ongoing studies are examining the use of blood-
based analysis for a cheaper and minimally invasive assessment of AD biomarkers [11,12],
with the aim of providing tools for the early detection of at-risk individuals, who can
benefit from preventative interventions. Subjects in asymptomatic at-risk stages can be
identified through dementia risk scores, which are weighted composites of non-modifiable
and modifiable risk factors that reflect the likelihood of an individual developing demen-
tia [13]. Overall, focus has shifted towards detecting pre-clinical non-symptomatic (or early
symptomatic) persons at risk of developing dementia, as they are believed to provide a
unique target group for preventive and/or disease-modifying interventions. Given the role
of modifiable factors related to lifestyle and vascular health, prevention trials have focused
on multidomain approaches, where multiple risk factors are simultaneously addressed
to maximise benefits. In the following section, we present a brief summary of evidence
on the main modifiable risk and protective factors for late-life cognitive impairment and
dementia, which are targeted in multidomain prevention studies and are in the focus of the
LETHE project.

2.1.1. Physical Activity

Engagement in regular physical activity has been linked to a lower risk of cognitive
decline, dementia, and AD in many prospective studies. The association is observed when
investigating physical activity in midlife, but older adults who exercise are also more likely
to maintain cognition than those who do not exercise [1]. The results of one meta-analysis
of 15 prospective cohort studies following up on 33,816 individuals without dementia for
1–12 years reported that physical activity had a significant protective effect against cognitive
decline, with high levels of activity being the most protective (hazard ratio ((acrshorthr)
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0.62, 95% CI 0.54–0.70) [14]. Another meta-analysis included 16 studies with 163,797
participants without dementia and found that the risk ratio (RR) of dementia in the highest
physical activity groups compared with the lowest was 0.72 (95% CI 0.60–0.86), and the RR
of AD was 0.55 (95% CI 0.36–0.84) [15]. From the point of view of preventive interventions,
the WHO guidelines on physical activity for global health have been integrated into the
guidelines for dementia risk reduction [7].

2.1.2. Cardiovascular Risk Factors—Diabetes, Hypertension, Hypercholesterolaemia,
and Obesity

Several studies consistently reported an increased risk of dementia and AD in associa-
tion with vascular and metabolic risk factors, such as hypertension, hypercholesterolaemia,
and obesity at midlife (≤65 years) [1]. Adequate management of these cardiovascular risk
factors is pivotal in reducing cardiovascular morbidity in older populations and is thus
recommended in midlife, while specific considerations apply for more advanced ages, as in
this age group, evidence on some pharmacological interventions (e.g., statins) is mixed.
Active treatment of hypertension in middle-aged (45–65 years) and older people (aged
older than 65 years) without dementia is recommended to reduce dementia incidence [1].
For diabetes, the association with the increased risk of dementia and AD has been shown
for all of adult life, with the risk being stronger when diabetes occurs in midlife than in
late-life [1]. At an older age, management of diabetes is recommended through standard
glycaemic control rather than intense glycaemic control due to the increased vulnerability
of older adults to hypoglycaemia, which can increase dementia risk.

2.1.3. Social Interaction

Social isolation might be a prodrome or a part of the dementia syndrome [3]. However,
growing evidence has shown that a lack of social engagement is also a risk factor for
dementia, while social contact—from being in a relationship, having contact and exchanging
support with family members or friends, participating in community groups, or engaging
in paid work—can be beneficial [3]. Cognitive benefits of social engagement, although of
modest size in some studies, seem to be consistent across studies conducted in diverse
populations, supporting the significance of social activity in different settings and cultures,
and highlighting the importance of considering social engagement in older people and not
only their physical and mental health.

2.1.4. Nutrition

Diet across the whole lifespan has a major effect on health and is linked to late-life
cognition and dementia risk, both directly and through its role on cardiovascular risk factors
related to dementia, such as diabetes mellitus, obesity, and hypertension. Observational
studies and RCTs have reported a reduced risk of cognitive impairment, dementia, and
AD in subjects with high adherence to specific diets, including the Mediterranean Diet,
the Nordic Diet, DASH (Dietary Approaches to Stop Hypertension), and the hybrid MIND
(Mediterranean-DASH Intervention for Neurodegenerative Delay) diet. Common elements
of these diets are the high intake of vegetables, nuts, and legumes; preference for whole
grains; and low consumption of red meat and high-saturated-fat foods. Differences in
the three dietary profiles entail specific indications of the quantity/quality of fruit and
vegetable oils (in general high consumption), as well as fish, poultry, and dairy products
(low-moderate intake) [1,3].

2.1.5. Cognitive Stimulating Activity

Mentally stimulating activities across the lifespan, including education, occupational
mental demands, and cognitively stimulating leisure activities, have been associated with
better late-life cognition and decreased risk of cognitive impairment, AD, and dementia.
Such a protective effect might be attributed to mechanisms related to the reduced accu-
mulation of AD neuropathology (i.e., resistance to AD), or the ability to delay or avoid
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the clinical expression of underlying neuropathology, or resilience to AD [16]. Cognitive
stimulation can continue into late life and can be promoted through various activities,
including cognitive stimulation therapy, which implies participation in a range of activities
aimed at improving cognitive and social functioning, and/or cognitive training, consisting
of a guided practice of specific standardised tasks designed to enhance particular cognitive
functions, such as memory, attention, or problem solving [17]. Computerised cognitive
training is increasingly available and evidence from intervention studies in cognitively
healthy older adults and subjects with MCI is encouraging, although methodological
limitations exist, and findings needs to be further verified [3,7].

2.1.6. Sleep, Meditation and Relaxation

Sleep disorders have received attention in recent years for their potential role in the
development of cognitive impairment [18]. A main challenge in assessing the current evi-
dence stems from the methodological heterogeneity of studies carried out so far, including
different designs (cross-sectional, longitudinal), study populations (some cohorts included
cases with cognitive impairment), and heterogeneity of sleep-related parameters assessed
(quality, measured through different indicators, and duration). Two meta-analyses reported
that sleep disturbances were associated with a higher risk of all-cause dementia (RR 1.2;
95% CI 1.1–1.3) and AD dementia (RR 1.6; 95% CI 1.3–1.9) compared with the absence
of sleep disturbance [19,20]. Even if less evidence is available on the potential cognitive
benefits of meditation, relaxation, and spirituality, there is growing interest in these factors,
as they have been suggested to be related to AD risk [21].

2.2. Predicting Dementia and Cognitive Decline

Up to date, most models have applied regression methods to predict dementia [22].
Recently, Pekkala et al. developed a late-life dementia prediction index using supervised
machine learning based on data from a population-based Cardiovascular Risk Factors,
Aging, and Incidence of Dementia (CAIDE) study [23,24], and they reported good results for
shorter-term dementia prediction [25]. It has also been shown that deep learning methods
are promising for predicting cognitive decline [26]. Generally, predicting dementia or
cognitive decline requires a quantitative parameter to derive information from. Accurate
risk prediction of dementia can leverage on a wide range of data—lifestyle, health-related,
etc.—which can be cumbersome to determine. Walters et al. attempted to circumvent this
problem by using data routinely collected in primary care settings for dementia prediction
using a regression model, which showed good results for an age range between 60 and
79 years [27].

Besides these global architectures targeted at the prediction of dementia, the detection
of specific dementia-relevant early symptoms using wearable technology has also already
be demonstrated. For example, it was shown that smart glasses can be used to monitor eye
blinks [28], which can help to distinguish between essential tremor and essential tremor-
Parkinson’s disease [29] and it was demonstrated that reliable wearable medical monitoring
systems can nowadays easily be implemented on mobile devices [30].

A consequent extension of current methods would be a combination of modern
machine learning methods and routinely—or even better, continuously—acquired data to
improve predictions on an individual level.

2.3. Sharing of Health Data

AI and machine learning technologies require large, diverse, and high-quality data sets
to ensure thorough training of the algorithms and to maintain the inclusion of all relevant
aspects. Collaborative data from various sources therefore greatly fosters data-driven
machine learning methods to yield robust and bias-free models which generalise well to
new unseen data [31–33]. However, especially in the healthcare domain, sharing of health
data for collaborative efforts is accompanied by numerous barriers [34,35] since the data
are highly sensitive in terms of data protection and data privacy since confidential patient
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data are not to be shared with unwanted third parties under any circumstances. Therefore,
the usage of these data are strongly regulated to preserve patient rights, and compliance to
data protection must be carefully assessed before data sharing [36,37]. Besides regulatory
considerations, sharing and subsequently merging data from multiple institutions also
comprises technical challenges regarding data curation and data harmonisation [38]. A
way to bypass this problem is to omit central storage of the data, perform calculations at
the data source, and only communicate model updates based on the local data without ever
transmitting the data itself. This approach, termed federated learning [39], has the potential
to revolutionise future studies in the healthcare sector since the amount of training data
can be drastically increased, while security issues can be handled easier.

3. The LETHE Project Approach

The aim of the LETHE project is to implement the promising FINGER intervention
model through ICT sensing and intervention technology and establish new digital biomark-
ers and models which allow monitoring and projecting cognitive decline and related risk
factor progression. The aim is a fully integrated and validated approach to positively
influence the above-mentioned modifiable risk factors based on big data collection and
advanced health monitoring, AI-based personalised risk detection, and personalised early
interventions. LETHE will base the initial AI model on unique long-term data collection
from key European clinical partners active in dementia research. Furthermore, the LETHE
consortium includes partners representing the target group of the LETHE model (Alzheimer
Europe advocacy group and LETHE Advisory Board composed of lay people), as well
as experienced ICT development and research partners in the field of sensing, interven-
tion technology, AI, big data infrastructure and behaviour psychology expertise, and data
protection experts. This joint expertise makes it possible to address the planned concept,
taking into account all necessary requirements. LETHE goes beyond previous prevention
trials by first developing a robust prediction model building up on big data from several
datasets and including people in pre-stages of dementia or early dementia and second
by planning an ICT-based multidomain lifestyle intervention, which will be continuously
optimised during an 18-month validation trial by generating new individual data (digital
biomarkers) via wearables.

LETHE will perform this by:

• Using existing data from multinational, European clinical observational cohorts,
and population-based observational and intervention studies (including the FIN-
GER RCT, with data from an up to 11-year follow-up, assessing the long-term effects
of a 2-year multidomain intervention) to develop initial prediction models for the
progression of dementia and related risk factors;

• Using results from former ICT-based EU projects to implement a mainly automated
ICT-based FINGER intervention model supported by validated sensing and interaction
technology;

• Extending and validating the personalised prediction models using digital biomarkers
collected in an 18-month validation trial in subjects at-risk of dementia, which will
include two arms: ICT-assisted structured multimodal intervention and self-guided
intervention group;

• Implementing a big data framework which allows a multicentre model optimisation
and roll out;

• Providing knowledge for individuals and care professionals about dementia risk fac-
tors and risk of disease onset and progression, integrating information on lifestyle
parameters, individual health data, and AD-related biomarkers, such as MRI (struc-
tural brain change) and blood-based biomarkers (APOE genotype, plasma markers
related to AD: amyloid-β42, amyloid-β40, phosphorylated (p)-Tau181, p-Tau231, neu-
rofilament light chain), thereby assessing their individual potential to benefit from
multidomain preventive interventions.
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Figure 1 visualises the overall approach defining the five core modules of LETHE.
These are (i) the mixed knowledge models based on big data analysis of previous large-scale
cross-sectional, longitudinal, and interventional trials from different European Countries;
(ii) the personalised ICT-assisted intervention protocol based on model simulations; (iii) the
intervention framework targeting seven main dementia modifiable factors; (iv) the data
collection framework based on multicentre passive and active ICT-supported data collec-
tion; (v) the knowledge discovery and visualisation for the person in the risk group as well
as professionals.

Personalisation of UI/UX interventions based on extended
FINGER model and health behaviour change models 

Mobile Apps Temi Robot

Prediction
Model Implementation of a mixed knowledge model

(retrospective data and prospective). Data-driven
prediction model of risk of cognitive impairments and
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Figure 1. The LETHE overall approach.

3.1. Technical Architecture of LETHE

Figure 2 visualises the detailed technical architecture of the LETHE solution. The
distribution of the modules regarding cloud infrastructure deployment as well as federate
computing machine learning models is not considered here. Core parts of the architec-
ture are the following: data generation over standardised protocols and utilising the
RADAR-BASE middleware (https://radar-base.org/, accessed on 10 May 2022). LETHE
will integrate third-party wearables, apps, and mIoT (mobile Internet of Things) devices
(such as a blood pressure meter) over standardised interfaces such as RESTful API, MQTT,
etc., also available in RADAR-BASE. LETHE will contribute to the open source RADAR-
BASE community by providing APIs not yet available on the platform. The data generation
technology in LETHE is application-independent and allows adapting the data collec-
tion technology (provider) depending on other setups or technology updates in the next
few years.

The core modules Data Lake and Data Warehouse comprise big data collection, har-
monisation, structuring, and pre-processing in the data lakes and integration into the data
warehouse. Data Lake thereby represents a repository of data stored in their raw format.
LETHE will employ big data frameworks based on EGI-federated cloud infrastructure
(https://www.egi.eu/federation/egi-federated-cloud/, accessed on 10 May 2022) using
Apache Hadoop and Spark and EGI/EOSC services for distributed large-scale data man-
agement. In phase I of the project, LETHE will resort to and optimise existing data. Clinical
relevant data will be structured and saved in the HL7 FHIR standard. This will allow a stan-
dardised and secure exchange of data as well as enable additional parties to provide target-
group-specific visualisations integrated into third-party electronic health records (EHRs) or

https://radar-base.org/
https://www.egi.eu/federation/egi-federated-cloud/
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hospital systems (for example, using SMART on FHIR (https://docs.smarthealthit.org/,
accessed on 10 May 2022). Structured and unstructured data will be hosted in an European
open science cloud (EOSC) environment, which ensures secure and protected data storage.
The AI core modules form the third major group in LETHE’s architecture, integrating sev-
eral modules and phases. Feature selection is applied for regression machine learning (ML)
modules; otherwise, deep learning models will be used. Model development will apply
different approaches, which will be tested and optimised iteratively. Initial models will
be based on training with existing data, whereas final models will integrate new features
based on digital biomarkers. For the final model selection, the model ensemble will then be
analysed in validation trials. The workflow from data retrieval to model optimisation will
be orchestrated by Apache Airflow. LETHE will distribute the models over the different
trial sites (distributed ML).
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throughout Europe to extend the cohort. The fourth major group of modules includes the modules for professional and 
end user specific data visualization. Reports for Professionals will focus on knowledge discovery about disease 
progression and the relation of different risk factors on disease prediction. Reports for End Users will focus on the 
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The adherence and the new pathway goals will feed the health behaviour change strategie model which will result in an 
updated individual intervention model. The final core modules conclude the manager modules as well as the integration 
of the Intervention Interfaces. Here state of the art and commercial available interfaces will be integrated for the direct 
communication with the person.  

 
Figure 4: LETHE detailed technical architecture 

 
LETHE project takes advantage of existing and ongoing actions and will benefit from the already available results and 
technological developments on the sensing technology side, interventions as well as interaction technologies. This will 
help the project to interchange know-how and technology ready tools in mIoT technology, multimodal sensor 
monitoring, big-data, data analytics and security and privacy. The following table depicts a list of such initiatives with 
the highest relevance to the project. 
 
Table 2: LETHE connection to recent EU research projects 
Project Description Potential links to LETHE 

 FINGER17 is 2-year multi-center randomized 
controlled intervention trial carried out in Finland 
(Coordinated by the Finnish Institute for Health and 
Welfare, Helsinki), in collaboration with 
Karolinska Institutet (Sweden), testing the effect of 
a multi-domain intervention in delaying cognitive 
impairment and disability in older people at risk for 

The FINGER core partners THL and Karolinska Institutet 
will bring in the experience of the FINGER study and serve 
as a major guiding partner for LETHE to enroll the FINGER 
protocol on automatized ICT interventions. 
KI and THL are also leading EURO-FINGERS, a newly-
funded JPND project, aiming to create a framework to 
advance, optimize and scale-up the FINGER model across 

 
 
17 https://thl.fi/fi/web/thlfi-en/research-and-expertwork/projects-and-programmes/finger-research-project 

Associated with document Ref. Ares(2020)7313823 - 03/12/2020

Figure 2. LETHE detailed technical architecture.

3.2. Prediction Models

The development of the LETHE prediction model will be comprised of two phases
(see Figure 3). Phase I will utilise retrospective data from multiple institutions to train
an initial prediction model to predict the possible onset of cognitive decline among older
adults at risk of dementia. Retrospective data include features regarding demographics,
clinical markers, cognition, health status, functional status, lifestyle, mood, and quality of
life. Due to different designs of the involved studies, however, only parameters acquired
in the majority of these studies can be used in phase I to provide a sufficiently large data
set. In phase II, the baseline prediction model will be extended to include continuous
monitoring data about individual behaviours, lifestyle, and digital biomarkers gathered
from a variety of wearable technologies. An overview of available data in each phase is
shown in Table 1.

https://docs.smarthealthit.org/
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The employment of AI algorithms based on multimodal learning will allow for the
joined exploitation of structured and unstructured data to investigate the relations between
digital biomarkers, medical, and user-generated datasets. Unsupervised AI algorithms
will be developed (e.g., deep autoencoders and clustering algorithms) to discover new
knowledge, such as previously unexplored relations between retrospective and behavioural
data. Furthermore, supervised predictive models will be developed, e.g., Long Short-term
Memory (LSTMs) Neural Networks, which are specialised for handling data with the
temporal component. The time modelling will allow for the identification and prediction
of disease/treatment trajectories and relapse. Recently, the use of deep learning models
has attracted attention for the prediction of cognitive decline in elderly people [26,40,41].
The new knowledge, patient similarities, and predicted trajectories will be utilised to
monitor new patients based on patients with similar profiles.

Table 1. Available data for phases I and II of the LETHE project.

Phase I Phase II Acquisition Type Data Source

Clinical
Parameter

Anthropometric data Anthropometric
measures time-discrete

Blood markers Blood markers time-discrete
Blood pressure Blood pressure time-discrete

- Genetic markers time-discrete

Physical
Activity

and
Health

Medication Medication time-discrete
Heart diseases Heart diseases time-discrete

Diabetes Diabetes time-discrete
Injuries Injuries time-discrete

Family history Family history time-discrete
Falls/injury Falls/injury time-discrete

Exercise/Activity continuous Sensor
Heart rate continuous Sensor

SpO2 continuous Sensor
Gait characteristics continuous App

Cardio-
vascular

risk

Alcohol time-discrete
Alcohol continuous App

Smoking - time-discrete
Smoking continuous App

Social
interaction

Marriage status Marriage status time-discrete
Education level Education level time-discrete

Occupation Occupation time-discrete
Living alone Living alone time-discrete

Location change continuous Sensor
Social Apps continuous App

Time spent outside continuous Sensor
Chatbot continuous App

Nutrition

Weight - time-discrete
Weight continuous App
Meals continuous App

Calorie intake continuous App
Water intake continuous App

Cognition

Dementia (type) Dementia (type) time-discrete
Impairment state Impairment state time-discrete
Dementia ratings Dementia ratings time-discrete

MRI MRI time-discrete
CSF CSF time-discrete

ApoE ApoE time-discrete
Cognitive games continuous App

Tapping/typing games continuous App
Eye movement continuous App

Meditation
and

Sleep

Depression/GDS Depression/GDS time-discrete
Sleep quality - time-discrete

Sleep quality continuous Sensor
Meditation continuous App
Pulse, HRV continuous Sensor

Emotion recording continuous App

HRV: heart rate variability, GDS: geriatric depression scale; acquisition type continuous is to be understood on a
daily/weekly basis and not as permanent acquisition.
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based on existing FINGER, GEDOC, RDA,
ReGAI & insurance data and features
predicting dementia progression (NTB Total
Score, Executive Function, Processing Speed,
Memory)

Prediction Model:

based on Prediction Model
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change of a single lifestyle attribute (diet,
exercise, smoking, ...)
early warnings indentification

Enhanced Prediction Model:

new digital biomarkers (wearables, mobile
health devices, ..)
patient empowerment / self-regulation
HCP resource optimization through centralized
monitoring (dashboard)
personalized care pathway (patient-centered
healthcare)

Model generation Intervention Implementation

Data collection framework
Implementation Model validation

M12 M20

Phase I Phase II

Intervention Model Simulation

M48M01

Enhanced

Figure 3. Two phases of the LETHE model implementation: Phase I—model generation based on
retrospective data; Phase II—model extension and model validation.

4. Discussion
4.1. Leveraging Big Data Analytics, AI and Biomarkers for Personalised Early Risk Prediction of
Cognitive Decline

LETHE aims to advance the FINGER multidomain prevention approach with the
integration of AI-based prediction models, enabling accurate assessment and monitoring
of dementia risk and cognitive trajectories and implementing an ICT-based multidomain
lifestyle intervention, which will be tested in a validation trial in subjects at risk of dementia.
In this framework, state-of-the art and innovation technologies from three different technical
domains are combined: big data, AI analytics, and visualisation. In recent years, big data
has proven to be a disruptive technology that has found its way into our daily lives
to predict our behaviour and tailor services to our individual needs. In LETHE, there
is a similar goal for cognitive decline and risk of dementia: to meet the short-term and
long-term needs for people at-risk by providing personal risk assessment and predicting
cognitive changes based on past and current behaviour and health data. The availability
of modern technology serves as a beacon for the creation of new, previously unthought
of ways of risk assessment and prevention in at-risk stages in subjects with no or subtle
cognitive symptoms. Moreover, integrating data from technologies commonly present
in all levels of society such as intelligent Electronic Health Records (EHRs), innovative
biomarkers, mobile devices, smart sensors, and wearables exponentially increases this
potential. As there have been considerable technological developments in big data and
analytics, some of the early challenges have been largely solved. However, many remain
that can profoundly influence the success of the LETHE project and future projects. As such,
it is our goal to address all these challenges and provide practical solutions. The main
challenges that need to be solved include:

• Scalability and adaptation to data growth;
• Generation of information and insights on the temporal evolution of cognitive decline

in predementia stages;
• Integration of heterogeneous sources of structured and unstructured data;
• Acquisition of high-quality data, their validation and verification;
• Securing of health data and anonymisation despite personalisation.

To date, some studies using mIoT, sensors, and/or wearables have addressed many of
these issues in several different ways. Bashir et al. [42] suggested a big data framework
for data analytics collected from smart mIoT and wearable data using a combination of
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Cloudera Hadoop and PySpark. Zhang et al. [43] proposed the use of Firework, which
provides virtual data views on physically distributed data, allowing them to be treated
as a single data source. Yet another approach by Rathore et al. [44] stipulates the use of
the MapReduce Hadoop ecosystem in a real environment, whereby data are collected by
deploying different smart sensors and IoT devices and exploited through big data analytics.

Regarding prediction models for dementia, there are several risk factors and biomark-
ers linked to cognitive impairment, dementia, and AD, but their clinical utility is still
limited. Several risk prediction models have already been developed, e.g., the CAIDE
dementia risk score [45] that was developed by the members of the LETHE consortium and
that has been already used as an educational tool to disseminate information on dementia
risk factors and also as a screening instrument to select at-risk persons for the FINGER trial.
However, much work is still needed until accurate and reliable prediction tools can be used
in practice for decision-making related to the early detection of risk and the prevention of
dementia. LETHE builds up on these achievements and the availability of other findings
in the area of dementia risk assessment to define optimal recommendations for dementia
risk assessment and prediction use cases and improve on them or find new models and
tools if needed. Accurate dementia prediction requires tools that are able to handle large
amounts of complex multimodal data, e.g., cognitive, clinical, blood, genetic, and environ-
mental risk factors, and their temporal dynamics but also novel digital biomarkers from,
e.g., wearables. Data mining should be transparent and reliable, i.e., not just a dementia
probability number but also a comprehensive and objective signature of risk and prevention
potential to support clinicians in decision-making [25,46]. Such models have already been
developed using machine learning methods by the consortium members, and a similar
approach can be further developed with novel risk signature data collected within the
LETHE project. Within the LETHE project, we will develop prediction models for cognitive
decline with better sensitivity to change over time, determining intervention-related change
in overall dementia risk. For the first time, the long-term risk prediction model can be
developed with detailed long-term data (up to 11 years) of at-risk individuals within an
actual preventive clinical trial as well as with a new 18-month preventive trial collecting
rich digital biomarker data. These models can be used in clinical practice but also as tools
to identify target populations for the next generation of digital RCTs to prevent dementia
in the future.

4.2. Long Term Disease Knowledge

Cognitive impairment, dementia, and AD are complex and heterogeneous disorders,
and their complexity unfolds on different levels (e.g., shared risk factors and pathogenic
interactions of neurodegenerative and vascular underpinnings of cognitive impairment,
synergistic effects on cognition). Addressing the complexity and heterogeneity of dementia
and AD by incorporating multidimensional data reflecting risk factors, disease-driving
mechanisms, and age-related processes, together with novel digital biomarkers, into predic-
tion models, as proposed in the LETHE project, will accelerate the development of effective
strategies for dementia prediction and prevention. Neurodegenerative processes and
disease-related early behavioural changes might affect biological factors in presymptomatic
stages of dementia [47]; thus, the time-dependent effect of specific risk factors implies that a
life-course approach is crucial to understanding the effect of a specific exposure on the risk
of dementia. The early identification of individuals at a higher risk of developing dementia
becomes critical, as this may provide a window of opportunity to adopt lifestyle changes
to reduce the risk of dementia [48]. However, there is still a considerable gap between the
epidemiological evidence and its underlying biological mechanisms. Personalised predic-
tion and intervention implies comprehensive phenotyping of the subjects at risk in order
to establish risk and prevention potential and assign persons to tailored interventions.
Further information on cognitive function, brain imaging, and blood biomarkers is needed
to establish what should be measured and what treatment effect size should be determined
in future prevention trials. As neuropathological changes (e.g., cerebral accumulation of
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beta-amyloid and neurofibrillary tangles in the case of Alzheimer’s disease) can precede
the onset of cognitive problems [9,10] by a few decades, in vivo biomarkers mirroring such
changes are risk indicators which can inform risk assessment and monitoring. Evaluation
of blood biomarkers linked to AD is a rapidly growing research area, as it is expected to
become a cost-effective and minimally invasive approach. These biomarkers might be used
to identify and characterise higher-risk individuals to take part in trials. A recent study
showed that low amyloid-β42 and high NfL plasma levels are each independently and
in combination strongly associated with the risk of all-cause and AD dementia. These
data indicate that plasma NfL and amyloid-β42 levels can be used to assess the risk of
developing dementia in a non-demented population. Additionally, the ApoE ε4 allele—the
largest sole genetic risk factor for AD—is nowadays commonly used for risk stratifica-
tion in clinical trials, thereby showing different responses on interventional approaches
in ApoE4 carriers and non-carriers [49]. On the other side, blood biomarkers could be
used for monitoring the progression of the disease or even the efficacy of intervention,
especially if intervention is to be given to cognitively and functionally intact individuals
long before dementia onset, as clinical endpoints (e.g., clinical diagnosis) often used in
RCTs targeting symptomatic subjects might be not feasible in earlier at-risk stages. In
line with this, in cognitively healthy adults at risk for AD, moderate physical activity was
shown to lead to lower levels of pTau/Ab42 and tTau/Ab42 ratios as well as higher levels
of Ab in CSF [50]. Plasma NfL levels may be additionally useful in this regard [50]. Blood
biomarkers might represent a clinically applicable alternative surrogate endpoint for trials
that would be both cost-effective and minimally invasive, but little is known about their
value as surrogate endpoints for treatment responses in the prevention of AD dementia [51].
Up to now, data from longitudinal studies concerning the beneficial effect of physical
activity on AD biomarkers is scarce. Aerobic exercise is hypothesised to induce widespread
and permanent molecular and cellular changes that underlie both neurodegeneration and
neurogenesis [52]. In contrast, cognitive training is hypothesised to induce minor brain
structural changes but contribute to functional changes in trained cognitive domains [53].
MRI changes on regional brain volumes and cortical thickness have been evaluated in the
FINGER RCT, and exploratory analysis indicated that MRI parameters can predict cognitive
benefits to multidomain interventions and could thus support risk stratification [54].

Based on the state-of-the art knowledge, the LETHE trial will integrate several biomark-
ers, including brain MRI, APOE4 genotype, and blood biomarkers (plasma amyloid-β42,
NfL, p-tau181, p-tau231), which will be used in LETHE for stratifying individuals regard-
ing their underlying biological risk and predicting the response to the ICT-supported
multidomain intervention.

5. Conclusions

Understanding the complex and multifactorial causes of dementia is still an unmet
goal in dementia research. The collection of behaviour and medical data is therefore a key
part of the LETHE project and requirement for personalised and smart interventions. The
LETHE project aims to leverage large multidimensional data about individual behaviours,
lifestyle, health, and digital biomarkers on a previously unprecedented scale. Furthermore,
by supporting the utilisation of a plethora of mIoT and wearable technologies for home-
based dementia prevention and health promotion, high levels of accuracy in monitoring
can be achieved, and patterns of very early cognitive and behavioural changes that predict
cognitive decline can be detected among older adults at risk of dementia.
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